Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 80(11): 3002-3022, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30267355

RESUMO

Microtubules are filamentous tubular protein polymers which are essential for a range of cellular behaviour, and are generally straight over micron length scales. However, in some gliding assays, where microtubules move over a carpet of molecular motors, individual microtubules can also form tight arcs or rings, even in the absence of crosslinking proteins. Understanding this phenomenon may provide important explanations for similar highly curved microtubules which can be found in nerve cells undergoing neurodegeneration. We propose a model for gliding assays where the kinesins moving the microtubules over the surface induce ring formation through differential binding, substantiated by recent findings that a mutant version of the motor protein kinesin applied in solution is able to lock-in microtubule curvature. For certain parameter regimes, our model predicts that both straight and curved microtubules can exist simultaneously as stable steady states, as has been seen experimentally. Additionally, unsteady solutions are found, where a wave of differential binding propagates down the microtubule as it glides across the surface, which can lead to chaotic motion. Whilst this model explains two-dimensional microtubule behaviour in an experimental gliding assay, it has the potential to be adapted to explain pathological curling in nerve cells.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Neurológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Conceitos Matemáticos , Proteínas Motores Moleculares/metabolismo , Movimento , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Dinâmica não Linear , Ligação Proteica
2.
Front Immunol ; 8: 1830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312327

RESUMO

Secondary lymphoid organs are integral to initiation and execution of adaptive immune responses. These organs provide a setting for interactions between antigen-specific lymphocytes and antigen-presenting cells recruited from local infected or inflamed tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed process during embryogenesis. However, organogenesis of secondary lymphoid tissues can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed tissues afflicted by various pathological conditions, including cancer, autoimmunity, infection, or allograft rejection. Studies are beginning to shed light on the function of such structures in different disease settings, raising important questions regarding their contribution to progression or resolution of disease. Data show an association between the tumor-associated TLSs and a favorable prognosis in various types of human cancer, attracting the speculation that TLSs support effective local antitumor immune responses. However, definitive evidence for the role for TLSs in fostering immune responses in vivo are lacking, with current data remaining largely correlative by nature. In fact, some more recent studies have even demonstrated an immunosuppressive, tumor-promoting role for cancer-associated TLSs. In this review, we will discuss what is known about the development of cancer-associated TLSs and the current understanding of their potential role in the antitumor immune response.

3.
Biomech Model Mechanobiol ; 9(3): 247-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19859751

RESUMO

Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation).


Assuntos
Desenvolvimento Embrionário/fisiologia , Células Epiteliais/fisiologia , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Modelos Biológicos , Animais , Crescimento Celular , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos
4.
Appl Environ Microbiol ; 75(14): 4782-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19502449

RESUMO

The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance.


Assuntos
Bacillus/metabolismo , Toxinas Bacterianas/farmacologia , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Culex/ultraestrutura , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/ultraestrutura , Larva/efeitos dos fármacos , Larva/ultraestrutura , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...